
Foundations of python programming lab_06.md Dr Graeme Stuart 22/02/2022

1 / 7

Lab 6: Scoring

Our game is now essentially playable but there is one obvious missing component. In this exercise, we will

add a scoring mechanism and print the score at each step when we print the grid. This is the final addition

we need before we start building a tkinter GUI for the game.

Points are earned every time a merge happens. The number of points earned is equal to the value of the

newly merged tile.

Consider the following case:

[[None, None, None, None],
 [None, 2, None, 2],
 [None, None, None, None],
 [None, None, 2, 2]]

On moving left (or right) the two pairs of 2's will merge, producing two 4's and earning eight points. On

moving up (or down) only one pair will merge, earning four points.

Create the score attribute

The first thing we will do, is to create a score attribute on our Game class. We can initialise it to zero in the

__init__ method by just adding a single line like this.

 def __init__(self):
 self.grid = [[None, None, None, None],
 [None, None, None, None],
 [None, None, None, None],
 [None, None, None, None]]

 self.set_random_empty_tile(2)
 self.set_random_empty_tile(2)

 self.moves = {
 "W": core.move_up,
 "A": core.move_left,
 "S": core.move_down,
 "D": core.move_right
 }

 self.score = 0 # <- this is new

Foundations of python programming lab_06.md Dr Graeme Stuart 22/02/2022

2 / 7

We have added a single additional line like this

self.score = 0

Showing the score attribute

Now, in order to see the score, we can update the str method. Modifying the last line in the method to

include the score in the string representation of the game.

 def __str__(self):
 tiles = [[str(t or ".").center(4) for t in row] for row in self.grid]
 result = "\n".join([" ".join(row) for row in tiles])
 msg = ""
 if not self.playing:
 msg = "\nYOU QUIT THE GAME\n"
 if self.game_over:
 msg = "\nGAME OVER\n"
 return f"\nSCORE: {self.score}\n\n{result}\n{msg}" # <- this has changed

Calculating the score

We need to calculate the additional points earned by each move. This is a task for the core module.

Notice that the points are the same for left and right moves and for up and down moves. So we only need

two function, we will implement horizontal_points and vertical_points functions in the core

module. These functions will not be used to modify the grid, they will simply calculate the potential points.

The horizontal_points function will do all the work. The vertical_points function can be very

simple because it just needs to transpose the grid and call the horizontal_points function like this:

def vertical_points(grid):
 grid = transpose(grid)
 return horizontal_points(grid)

To calculate the potential points from a horizontal move, we need to first stack all the tiles to the left. Then

we need to look for pairs, just like we did when looking for potential merges. So our function goes

something like this.

Foundations of python programming lab_06.md Dr Graeme Stuart 22/02/2022

3 / 7

def horizontal_points(grid):
 grid = [stack_left(row) for row in grid]
 points = 0
 for row in range(4):
 for col in range(3):
 if grid[row][col] and grid[row][col] == grid[row][col + 1]:
 points += grid[row][col] * 2
 return points

We create a new grid by stacking each row with stack_left. Then we initialise the points to zero and loop

over each row. In each row, we check the three possible pairs. If they are not None and are the same, we

add to the points variable. Once all the loops have ended, we return the points variable.

This looks ok, but we should test it to make sure.

Testing the score calculation

We can implement some tests using the usual pattern. Create two classes, TestHorizontalPoints and

TestVerticalPoints. Add a few test functions to each class to test the function returns the correct

points. Just make up some sensible example grids.

Be careful to include a zero points example and an example where some points are earned. Try to include

things like pairs of None values and multiple possible pairs in a row.

Foundations of python programming lab_06.md Dr Graeme Stuart 22/02/2022

4 / 7

class TestHorizontalPoints(unittest.TestCase):

 def test_no_points(self):
 input = [[None, None, None, None],
 [2, 4, 8, 4],
 [2, 4, 8, 4],
 [2, 4, 8, 4]]
 self.assertEqual(core.horizontal_points(input), 0)

 def test_some_points(self):
 input = [[None, None, None, None],
 [2, 2, 8, 4],
 [2, 4, 8, 8],
 [2, 4, 8, 4]]
 self.assertEqual(core.horizontal_points(input), 20)

class TestVerticalPoints(unittest.TestCase):

 def test_no_points(self):
 input = [[None, None, None, None],
 [2, None, 8, 4],
 [4, 8, 4, 2],
 [2, 4, 8, 4]]
 self.assertEqual(core.vertical_points(input), 0)

 def test_some_points(self):
 input = [[None, None, None, None],
 [2, 2, 8, 4],
 [2, 4, 8, 8],
 [2, 4, 8, 4]]
 self.assertEqual(core.vertical_points(input), 28)

Try to run the tests.

Oh dear, some of the tests are failing!

Find out where the problem is and see if you can work out why the calculations are not working properly.

Hint: There is some double counting happening here.

The grid variable inside the horizontal_points function can be modified as we calculate the score.

Don't worry if you can't solve it. Move on and we will provide the solution at the end.

Updating the score

Foundations of python programming lab_06.md Dr Graeme Stuart 22/02/2022

5 / 7

The next step is to integrate the new core functions into our game and update the self.score attribute

accordingly at each move. To do this, we will need to know whether to use horizontal_points or

vertical_points. We can do this with another dictionary to map the functions to the user-provided

command.

Add the following into your __init__ method:

 self.point_functions = {
 "W": core.vertical_points,
 "A": core.horizontal_points,
 "S": core.vertical_points,
 "D": core.horizontal_points
 }

Here we are mapping the "W" and "S" commands to the vertical function and "A" and "S" to the horizontal

function. So, given the user-provided command, we can access the correct function.

The final addition is to calculate the new score in the process_command method. We do this just before

we apply the move to the grid. This allows us to use the existing grid data to calculate the score.

 def process_command(self, command):
 next_grid = self.moves[command](self.grid)
 if next_grid != self.grid:
 self.score += self.point_functions[command](self.grid)
 self.grid = next_grid
 new_tile = choice([2, 2, 2, 4])
 self.set_random_empty_tile(new_tile)
 self.game_over = core.is_game_over(self.grid)

Try the game. You should see that the score now updates after each merge.

Solution

The tests failed above because three similar tiles in a row were being treated as two merges. The answer is

to set any matching tiles to None once you have added their score to the result.

Foundations of python programming lab_06.md Dr Graeme Stuart 22/02/2022

6 / 7

def horizontal_points(data):
 data = [stack_left(row) for row in data]
 points = 0
 for row in range(4):
 for col in range(3):
 if data[row][col] and data[row][col] == data[row][col + 1]:
 points += data[row][col] * 2
 # These next two lines are new
 data[row][col] = None
 data[row][col + 1] = None
 return points

Foundations of python programming lab_06.md Dr Graeme Stuart 22/02/2022

7 / 7

Challenges

Create a new file gui.py. Using the game module as a template, spend some time trying to build an

equivalent game class using tkinter.

Show a score label at the top. Add a frame to hold the tiles. Make each tile a simple label.

